洋酒厂家
免费服务热线

Free service

hotline

010-00000000
洋酒厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

Facebook开源PyTorch版fairseq准确性最高速度比循环神经网络快9倍_[#第一枪]

发布时间:2021-06-07 15:35:18 阅读: 来源:洋酒厂家

AI科技评论按:今年5月,Facebook AI研究院(FAIR)发表了他们的研究成果fairseq,在fairseq中,他们使用了一种新型的卷积神经网络来做语言翻译,比循环神经网络的速度快了9倍,而且准确性也是现有模型中最高的。此外,他们在GitHub公布了fair序列建模工具包的源代码和训练好的系统,其他的研究者可以在此基础上建立自己的关于翻译、文本总结和其他任务的模型。

详情可参见快9倍!Facebook开源机器学习翻译项目fairseq一文。

日前,Facebook AI研究团队又在GitHub上开源了fairseqPyTorch版本。

相关介绍

fairseq是Facebook AI研究院发布的一个序列到序列的学习工具,它的原作者(排名不分先后)是Sergey Edunov、Myle Ott和Sam Gross。该工具包能实现Convolutional Sequence to Sequence Learning(地址:https://arxiv.org/abs/1705.03122)中描述的全卷积模型,并能在一台机器上进行多GPU训练,也能在CPU和GPU上快速产生束搜索(beam search)。在开源的数据中,他们提供了英译法和英译德的预训练模型。

引用

如果你的论文中用了FAIR的相关代码,可以这样引用:

@inproceedings{gehring2017convs2s,

author = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},

title = "{Convolutional Sequence to Sequence Learning}",

booktitle = {Proc. of ICML},

year = 2017,

}

工具和安装

macOS或是Linux系统的电脑

要是想训练新的模型,需要用到NVIDIA GPU和NCCL(https://github.com/NVIDIA/nccl)

Python 3.6

安装PyTorch(http://pytorch.org/)

目前的fairseq-py需要从GitHub库中获得PyTorch,有多种方式安装它。我们建议利用Miniconda3,执行如下的步骤。

1、安装Miniconda3(https://conda.io/miniconda.html);激活Python 3环境

2、安装PyTorch

conda install gcc numpy cudnn nccl

conda install magma-cuda80 -c soumith

pip install cmake

pip install cffi

git clone https://github.com/pytorch/pytorch.git

cd pytorch

git reset --hard a03e5cb40938b6b3f3e6dbddf9cff8afdff72d1b

git submodule update --init

pip install -r requirements.txt

NO_DISTRIBUTED=1 python setup.py install

3、在GitHub中复制和执行如下代码来安装fairseq-py

pip install -r requirements.txt

python setup.py build

python setup.py develop

快速开始

你将需要使用到如下的命令:

python preprocess.py: 数据预处理: 构造词汇和二进制训练数据

python train.py: 在一个或多个GPU上训练新的模型

python generate.py: 用训练好的模型翻译预处理之后的数据

python generate.py -i:用训练好的模型翻译新的文本

python score.py: 通过与参考译文对比,给出生成译文的BLEU分数

评估预训练模型:

首先,下载预训练好的模型和词汇:

$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2 | tar xvjf -

模型中用的是BPE词汇(https://arxiv.org/abs/1508.07909),用户必须在翻译之前将编码应用到源文本。可以用apply_bpe.py 脚本中的wmt14.en-fr.fconv-cuda/bpecodes文件。@@是延续标记,原始文本可以通过sed s/@@ //g来恢复,此外把--remove-bpe 标记传递到generate.py也有同样的作用。在生成BPE词汇之前。输入文本需要用mosesdecoder中的tokenizer.perl来标记。

下面是利用python generate.py -i产生翻译的例子,beam size为5:

$ MODEL_DIR=wmt14.en-fr.fconv-py

$ python generate.py -i \

--path $MODEL_DIR/model.pt $MODEL_DIR \

--beam 5

[en] dictionary: 44206 types

[fr] dictionary: 44463 types

model fconv_wmt_en_fr

loaded checkpoint /private/home/edunov/wmt14.en-fr.fconv-py/model.pt (epoch 37)

> Why is it rare to discover new marine mam@@ mal species ?

S Why is it rare to discover new marine mam@@ mal species ?

O Why is it rare to discover new marine mam@@ mal species ?

H -0.08662842959165573 Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins ?

A 0 1 3 3 5 6 6 10 8 8 8 11 12

训练新模型

数据预处理

fairseq-py工具包中包含用于IWSLT 2014德转英语料库的一个预处理脚本样例。先将数据进行预处理和二进制编码:

$ cd data/

$ bash prepare-iwslt14.sh

$ cd ..

$ TEXT=data/iwslt14.tokenized.de-en

$ python preprocess.py --source-lang de --target-lang en \

--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \

--thresholdtgt 3 --thresholdsrc 3 --destdir data-bin/iwslt14.tokenized.de-en

这将会得到能够用于训练模型的二进制数据。

训练

用python train.py来训练新的模型,下面是能很好的适于IWSLT 2014数据集中的一些样例设置。

$ mkdir -p checkpoints/fconv

$ CUDA_VISIBLE_DEVICES=0 python train.py data-bin/iwslt14.tokenized.de-en \

--lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \

--arch fconv_iwslt_de_en --save-dir checkpoints/fconv

默认情况下,python train.py会占用电脑中所有可用的GPU,可以用CUDA_VISIBLE_DEVICES环境来选择特定的GPU,或者改变使用的GPU数目。

有一点需要注意,batch大小是基于每个batch的最大token数来设置的,你需要基于系统中可用的GPU内存,选取一个稍小的值。

生成翻译

模型训练好之后就能利用python generate.py(用于二进制数据)或python generate.py -i(用于未处理文本)生成翻译了。

$ python generate.py data-bin/iwslt14.tokenized.de-en \

--path checkpoints/fconv/checkpoint_best.pt \

--batch-size 128 --beam 5

[de] dictionary: 35475 types

[en] dictionary: 24739 types

data-bin/iwslt14.tokenized.de-en test 6750 examples

model fconv

loaded checkpoint trainings/fconv/checkpoint_best.pt

S-721 danke .

T-721 thank you .

...

如果只想用一个CPU,加入--cpu标记。可以通过--remove-bpe移除掉BPE标记。

训练好的模型

目前开源的全卷积序列到序列模型如下:

wmt14.en-fr.fconv-py.tar.bz2(https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2): 用于WMT14英译法的模型,包含词汇

wmt14.en-de.fconv-py.tar.bz2(https://s3.amazonaws.com/fairseq-py/models/wmt14.en-de.fconv-py.tar.bz2): 用于WMT14英译德的模型,包含词汇

针对以上模型,已经预处理和编码过的测试集如下:

wmt14.en-fr.newstest2014.tar.bz2(https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.newstest2014.tar.bz2): 用于WMT14英译法的newstest2014测试集

wmt14.en-fr.ntst1213.tar.bz2(https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.ntst1213.tar.bz2): 用于WMT14英译法的newstest2012和newstest2013测试集

wmt14.en-de.newstest2014.tar.bz2(https://s3.amazonaws.com/fairseq-py/data/wmt14.en-de.newstest2014.tar.bz2): 用于WMT14英译德的newstest2014测试集

下面是在一块GTX-1080ti上利用测试集产生结果的样例(英译德),运行在batch模式下:

$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2 | tar xvjf - -C data-bin

$ curl https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.newstest2014.tar.bz2 | tar xvjf - -C data-bin

$ python generate.py data-bin/wmt14.en-fr.newstest2014 \

--path data-bin/wmt14.en-fr.fconv-py/model.pt \

--beam 5 --batch-size 128 --remove-bpe | tee /tmp/gen.out

...

Translated 3003 sentences (95451 tokens) in 81.3s (1174.33 tokens/s)

Generate test with beam=5: BLEU4 = 40.23, 67.5/46.4/33.8/25.0 (BP=0.997, ratio=1.003, syslen=80963, reflen=81194)

# Scoring with score.py:

$ grep ^H /tmp/gen.out | cut -f3- > /tmp/gen.out.sys

$ grep ^T /tmp/gen.out | cut -f2- > /tmp/gen.out.ref

$ python score.py --sys /tmp/gen.out.sys --ref /tmp/gen.out.ref

BLEU4 = 40.23, 67.5/46.4/33.8/25.0 (BP=0.997, ratio=1.003, syslen=80963, reflen=81194)

via:GitHub(https://github.com/facebookresearch/fairseq-py)

雷锋网AI科技评论编译整理。雷锋网

雷锋网版权文章,未经授权禁止转载。详情见转载须知。

防腐胶带

led户外灯具图片

家用除湿干燥剂

相关阅读